
CGS 3175: Internet Applications (Introduction) Page 1 © Mark Llewellyn

CGS 3175: Internet Applications
Fall 2007

Introduction to the Internet – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cgs3175/fall2007

CGS 3175: Internet Applications (Introduction) Page 2 © Mark Llewellyn

• UDP (User Datagram Protocol) is an alternative protocol
to TCP that also builds on IP (extends the functionality of
IP).
– The main feature that UDP adds to IP is the port concept that is the

same as we saw with TCP.

• Unlike TCP, UDP does not provide two way-connection or
guaranteed delivery.

• Its advantage over TCP is speed (for simple tasks).
– For example, if all you want to do is send a short message to

another computer, you’re expecting a single short response
message, and you can handle resending if you don’t receive the
response within a reasonable amount of time, the UDP is a good
alternative to TCP.

UDP

CGS 3175: Internet Applications (Introduction) Page 3 © Mark Llewellyn

• One Internet application that is often run using UDP rather
than TCP is the Domain Name Service (DNS).

• While every device on the Internet has an IP address (such
as 132.170.7.155), humans generally find it easier to refer
to machines by names, such as www.cs.ucf.edu.

• DNS provides a mechanism for mapping back and forth
between IP addresses and host names.

• Basically, there are a number of DNS servers on the
Internet, each listening through UDP software to a port
(port 53 if the server is following the current IANA port
assignment standard).

UDP

CGS 3175: Internet Applications (Introduction) Page 4 © Mark Llewellyn

• When a computer on the Internet needs DNS services (for
example to convert a host name such as www.cs.ucf.edu)
to its corresponding IP address, it uses the DUP software
running on its system to send a UDP message to one of
these DNS servers, requesting the IP address.

• If all goes well, this DNS server will then send back a
UDP message containing the IP address.
– Recall that it took three messages just to get the TCP connection

set up, so the UDP approach is much for efficient for sporadic
DNS queries.

– UDP is sometimes referred to as a lightweight communication
protocol and TCP as a heavyweight protocol. In general, in
computer science, the terms lightweight and heavyweight are used
to describe alternative software solutions to some problem, with
the lightweight solution having less functionality but also less
overhead.

UDP

CGS 3175: Internet Applications (Introduction) Page 5 © Mark Llewellyn

• Internet host names consist of a sequence of labels
separated by dots.

• The final label (rightmost) in a host name is a top-level
domain.

• There are two standard types of top-level domain:
1. Generic: such as .com, .edu, .org, and .biz.

2. Country-code: such as .de, .il, and .mx.

• The top-level domain names are assigned by the Internet
Corporation for Assigned Names and Numbers (ICANN),
a private nonprofit organization formed to take over
technical Internet functions that were originally funded by
the U.S. government.

DNS

CGS 3175: Internet Applications (Introduction) Page 6 © Mark Llewellyn

• Each top-level domain is divided into subdomains (second-level
domains), which may in turn be further divided and so on.

• The assignment of second-level domains within each top-level
domain is performed (for a fee) by a registry operator selected by
ICANN.

• The owner of a second-level domain can then further divided
that domain into subdomains, and so on. Ultimately, the
subdomains of a domain are individual computers.

• Such a subdomain, consisting of a local host name followed by a
domain name (typically consisting of at least two labels) is
sometimes called a fully qualified domain name.
– For example, www.cs.ucf.edu is a fully qualified domain name for a

host with local name www that belongs to the cs third-level domain of the
ucf second-level domain of the edu top-level domain.

DNS

CGS 3175: Internet Applications (Introduction) Page 7 © Mark Llewellyn

• Some user-level tools are available that allow you to query the Inernet DNS.

• For example, on most machines the nslookup command can be typed at a
command prompt in order to find the IP address of a fully qualified domain
name or vice versa.

DNS

Qualified name and IP address of
the DNS server that is providing

the information

Canonical domain name

Alias domain name

CGS 3175: Internet Applications (Introduction) Page 8 © Mark Llewellyn

• The following analogy may help to relate the computer
networking concepts we’ve just covered with something more
familiar: the telephone network.

• The Internet is like the physical telephone network: it provides
the basic communication infrastructure.

• UDP is like calling a number and leaving a message rather than
actually speaking with the intended recipient.

• DNS is the Internet version of directory assistance, associating
names with numbers.

• TCP is roughly equivalent to placing a phone call and having the
other party answer: you now have a connection and are able to
communicate back and forth.

Higher-Level Protocols

CGS 3175: Internet Applications (Introduction) Page 9 © Mark Llewellyn

• In the cases of both TCP and a phone call, different protocols
can be used to communicate once a connection has been
established.
– For example, when making a telephone call, the parties must agree on the

language(s) that will be used to communicate. Beyond that, there are also
conventions (protocols) that are followed to decide which party will speak
first, how the parties will take turns speaking, and so on. Furthermore,
different protocols may be used in different contexts: I answer the phone
at home differently than I do at work, for example.

• Similarly, a variety of higher-level protocols are used to
communicate once a TCP connection has been established (see
figure on page 18 in the first set of notes). SMTP and FTP are
two examples we mentioned earlier of widely used higher-level
protocols used to communicate over TCP connections.

• The protocol that will be used to communicate over a TCP
connection is normally determined by the port number used to
establish the connection.

Higher-Level Protocols

CGS 3175: Internet Applications (Introduction) Page 10 © Mark Llewellyn

• The primary TCP-based protocol used for
communication between web servers and
browsers is called the Hypertext Transport
Protocol (HTTP).

• In some sense, just as IP is a key component in
the definition of the Internet, HTTP is a key
component in the definition of the World Wide
Web.

• Before looking into HTTP – let’s consider what
the Web is, and how HTTP figures in its
definition.

Higher-Level Protocols

CGS 3175: Internet Applications (Introduction) Page 11 © Mark Llewellyn

• Public sharing of information has been a part of
the Internet since its early days.

– For example, the Usenet newsgroup service began in
1979 and provided a means of “posting” information
that could be read by users on other systems with the
appropriate software.

– If you would like to check out Usenet you can get to
it through the Google Groups Usenet discussion
forum at http://www.groups.google.com (See next
page).

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 12 © Mark Llewellyn

• Public sharing of information has been a part of
the Internet since its early days.

– For example, the Usenet newsgroup service began in
1979 and provided a means of “posting” information
that could be read by users on other systems with the
appropriate software.

– If you would like to check out Usenet you can get to
it through the Google Groups Usenet discussion
forum at http://www.groups.google.com (See next
page).

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 13 © Mark Llewellyn

• Large files were (and still are) often shared by running
an FTP server application that allowed any user to
transfer the files from their origin machine to the user’s
machine.

• The first Internet chat software in widespread use,
Internet Relay Chat (IRC), provided both public and
private chat facilities.

• As the amount of information publicly available on the
Internet grew, the need to locate information also grew.

• Various technologies for supporting information
management and search on the Internet were
developed.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 14 © Mark Llewellyn

• Some of the more popular information management technologies
in the early 1990s were:
– Gopher information servers, which provided a simple hierarchical view

of documents.

– Wide Area Information System (WAIS) system for indexing and
retrieving information.

– The ARCHIE tool for searching online information archives accessible by
FTP.

• The World Wide Web also was developed in the early 1990s and
for a while was just one among several Internet information
management technologies.

• To understand why the Web supplanted the other technologies,
its helpful to understand a bit of the mechanics of the Web and
the other Internet information management technologies.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 15 © Mark Llewellyn

• All of these technologies consist of (at least) two types
of software: client and server.

• An Internet-connected computer that wishes to provide
information to other Internet systems must run server
software, and a system that wishes to access the
information provided by servers must run client
software (for the Web, the client software is normally a
web browser).

• The server and client applications communicate over
the Internet by following a communication protocol
built on top of TCP/IP.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 16 © Mark Llewellyn

• As we just mentioned (page 10), the protocol used by
the Web is the Hypertext Transport Protocol (HTTP).

• As we will see, HTTP is a rather generic protocol that
for the most part supports a client requesting a
document from a server and the server returning the
requested document.
– It is this generic nature of HTTP that gives it the advantage of

somewhat more flexibility than is present in the protocols
used by WAIS and Gopher.

• A bigger advantage for the Web is the type of
information communicated. Most web pages are
written using the Hypertext Markup Language
(HTML), which along with HTTP is a fundamental
web technology.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 17 © Mark Llewellyn

• HTML pages can contain the familiar web links
(technically called hyperlinks) to other documents on
the Web.

– While certain Gopher pages could also contain links, normal
Gopher documents were just plain text.

– WAIS and ARCHI provided no direct support for links.

• In addition to hyperlinks, modern versions of HTML
also provide extensive page layout facilities, including
support for inline graphics, which as you can imagine,
has added significantly to the commercial appeal of the
Web.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 18 © Mark Llewellyn

• The World Wide Web, then can be defined in much the
same way as the Internet.

• While the Internet can be thought of as the collection of
machines that are globally connected via IP, the World
Wide Web can be informally defined as the collection
of machines (web servers) on the Internet that provide
information via HTTP, and in particularly those that
provide HTML documents.

• Now, let’s look more closely at HTTP.

The World Wide Web

CGS 3175: Internet Applications (Introduction) Page 19 © Mark Llewellyn

• HTTP is a form of communication protocol, in particular a
detailed specification of how web clients and servers should
communicate.

• The basic structure of HTTP communication follows what is
known as a request-response model.

• Specifically, the protocol dictates that an HTTP interaction is
initiated by a client sending a request message to the server; the
server is then expected to generate a response message.

• The format of the request and response messages is dictated by
HTTP.

• HTTP does not dictate the network protocol to be used to send
these messages, but does expect that the request and response are
both send within a TCP-style connection between the client and
the server. So most HTTP implementations send these messages
using TCP.

Hypertext Transport Protocol – HTTP

CGS 3175: Internet Applications (Introduction) Page 20 © Mark Llewellyn

• Let’s relate this to what happens when you browse the Web.

• The next page shows a browser window in which I typed
http://www.example.org in the location bar.

• When the Enter key is pressed after typing this address, the
browser created a message conforming to the HTTP protocol,
used DNS to obtain an IP address for ww.example.org, created a
TCP connection with the machine at the IP address obtained,
sent the HTTP message over this TCP connection, and received
back a message containing the information that is shown in the
client area of the browser (the portion of the browser containing
the information received from the web server).

•

Hypertext Transport Protocol – HTTP

CGS 3175: Internet Applications (Introduction) Page 21 © Mark Llewellyn

Most of the key standards for the Internet are
Documented in RFCs (Request for
Comments). They are maintained by the
RFC Editor at http://rfc-editor.org. An
organization known as the Internet
Engineering Steering Group (IESG) is
responsible for deciding which RFCs become
standards.

CGS 3175: Internet Applications (Introduction) Page 22 © Mark Llewellyn

• Let’s relate this to what happens when you browse the Web.

• The next page shows a browser window in which I typed
http://www.example.org in the location bar.

• When the Enter key is pressed after typing this address, the
browser created a message conforming to the HTTP protocol,
used DNS to obtain an IP address for ww.example.org, created a
TCP connection with the machine at the IP address obtained,
sent the HTTP message over this TCP connection, and received
back a message containing the information that is shown in the
client area of the browser (the portion of the browser containing
the information received from the web server).

Hypertext Transport Protocol – HTTP

CGS 3175: Internet Applications (Introduction) Page 23 © Mark Llewellyn

• A nice feature of HTTP is that these request and
response messages often consist entirely of plain text in
a fairly readable form.

• An HTTP request message consists of a start line
followed by a message header and optionally a message
body.

– The start line always consists of printable ASCII characters,
and the header normally does as well.

• What’s more, the HTTP response (or at least most of it)
is often also a stream of printable characters.

Hypertext Transport Protocol – HTTP

CGS 3175: Internet Applications (Introduction) Page 24 © Mark Llewellyn

• Let’s look at HTTP in action, by using Telnet to connect to the
same site we used on page 21.

• This can be done on many systems by entering telnet from a
command prompt.

• If you can’t do this from your own system don’t worry about it,
just look at the example on the next page and follow what’s
happening.

• Specifically, we need to telnet to port 80, the IANA standard
port for HTTP web servers, type in an HTTP request message
corresponding to the Internet address we entered into the
browser on page 21, and view the response.

• The request consists of three lines beginning with the GET and
ending with a blank line.

Hypertext Transport Protocol – HTTP

CGS 3175: Internet Applications (Introduction) Page 25 © Mark Llewellyn

Open telnet connection on port 80 (you type this)

HTTP request message (you type this)

HTTP response begins (server generated) – the status line

HTTP response header (server generated) from the
line after the status line to the first blank line.

The response body
written in HTML (server

generated)

CGS 3175: Internet Applications (Introduction) Page 26 © Mark Llewellyn

• Every HTTP request message has the same basic
structure:

Start line
Header field(s) (one or more)
Blank line
Message body (optional)

• The start line in the previous example was:

GET / HTTP/ 1.1

HTTP Request Message

CGS 3175: Internet Applications (Introduction) Page 27 © Mark Llewellyn

• Every start line consists of three parts, with a
single space used to separate adjacent parts:

1. Request method

2. Request-URI portion of the web address

3. HTTP version

• We’ll look at each of these parts of the start line
– in reverse order – in the next few pages, then
move on to the header fields and body.

HTTP Request Message

CGS 3175: Internet Applications (Introduction) Page 28 © Mark Llewellyn

• The initial version of HTTP was referred to as
HTTP/0.9, and the first Internet RFC (Request for
Comments) described HTTP/1.0.

• In 1997, HTTP/1.1 was formally defined, and is
currently an Internet Draft Standard (RFC-2616)
[ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt].

• Essentially all operational browsers and servers
support HTTP/1.1, including the server that generated
the previous example (as indicated by the HTTP
version portion of the status line).

Start Line – HTTP Version

CGS 3175: Internet Applications (Introduction) Page 29 © Mark Llewellyn

• The second part of the start line is known as the Request-URI.

• The concatenation of the string http://, the value of the Host
header field (www.example.org, in this example), and the
Request-URI (/ in this example) forms a string known as a
Uniform Resource Identifier. (URI).

• A URI is an identifier that is intended to be associated with a
particular resource (such as a web page or graphics image) on
the World Wide Web.

• Every URI consists of two parts: the scheme, which appears
before the colon (:), and another part that depends on the
scheme.

• Web addresses, for the most part, use the http scheme (the
scheme name in in URIs is case insensitive, but is generally
written in lower case letters).

Start Line – Request-URI

CGS 3175: Internet Applications (Introduction) Page 30 © Mark Llewellyn

• In this scheme, the URI represents the location of a resource on the Web. A URI of
this type is said to be a Uniform Resource Locator (URL).

• Therefore, URIs using the http scheme are both URIs and URLs.

• Some other URI schemes that mark the URI as a URL are shown in the table below.
A complete list of the currently registered URI schemes along with references to
details on each scheme can be found at http://iana.org/assignments/uri-
schemes.html.

Start Line – Request-URI

File accessible from machine
processing this URI.file:///C:/temp/localFile.txtfile

File located on an FTP serverftp://ftp.example.org/pub/afile.txtftp

Resource on web server
supporting encrypted
communications

https://secure.example.org/sec.txthttps

Mailboxmailto: someone@example.orgmailto

Telnet servertelnet://host.example.org/telnet

Type of ResourceExample URLScheme Name

CGS 3175: Internet Applications (Introduction) Page 31 © Mark Llewellyn

• In addition to the URL type of URI, there is one other type,
called a Uniform Resource Name (URN).

• Although not as common as URLs, URNs are sometimes used
in web development (when using tab libraries the tab
namespace must be a URN – we’ll see this later in the
semester).

• A URN is designed to be a unique name for a resource rather
than specifying a location at which to find the resource.

– For example, the textbook for our course has an ISBN (International
Standard Book Number) of 0-321-42467-0 associated with it, and this is
the only book worldwide with this number. So it makes sense to
associate information regarding this book, such as bibliographic data,
with its ISBN. In fact, this book has an associated URN, which can be
written as follows: urn:ISBN:0-321-42467-0

Uniform Resource Name (URN)

CGS 3175: Internet Applications (Introduction) Page 32 © Mark Llewellyn

urn:ISBN:0-321-42467-0

• The URI for a URN always consists of three colon-separated parts, as
illustrated here. The first part is the scheme name, which is always urn for a
URN-type URI.

• The second part is the namespace identifier, which is this example is ISBN.
Other currently registered URN namespace identifiers are listed at:
http://iana.org/assignments/urn-namespaces.

• The third part is the namespace-specific string. The exact format and
meaning of this string varies with the namespace, in this example, it
represents the ISBN of a book and has format defined by the IANA.

Uniform Resource Name (URN)

Scheme
name

Namespace
identifier

Namesapce –
specific string

CGS 3175: Internet Applications (Introduction) Page 33 © Mark Llewellyn

• The last (first) part of the start line is known as the request
method.

• The standard HTTP methods and a brief description of each are
shown in the table on the next page.

• The method part of the start line of an HTTP request must be
written entirely in uppercase letters, as shown in the table.

• The primary HTTP method is GET. This is the method used
when you type a URL into the Location bar of your browser.

– It is also the method that is used by default when you click on a link in a
document displayed in your browser and when the browser downloads
images for display within an HTNL document.

• The POST method is typically used to send information
collected from a form displayed within a browser, such as an
order-entry form, back to the web server.

Start Line – Request Method

CGS 3175: Internet Applications (Introduction) Page 34 © Mark Llewellyn

Standard HTTP/1.1 Methods

Return a copy of the complete HTTP request message, including start line,
header fields, and body received by the server. Used for testing purposes.

TRACE

Store the body of this message on the server and assign the specified
Request-URI to the data stored so that future GET requests messages
containing this Request-URI will receive this data in their response
messages.

PUT

Return the same HTTP header fields that would be returned if a GET method
were used, but not return the message body that would be returned to a GET.
Provides information about a resource without the communication overhead
of transmitting the body of the response.

HEAD

Return the resource specified by the Request-URI as the body of a response
message.

GET

Respond to future HTTP request messages that contain the specified
Request-URI with a response indicating that there is no resource associated
with this Request-URI.

DELETE

Pass the body of this request message on as data to be processed by the
resource specified by the Request-URI.

POST

Requests server to…Method

CGS 3175: Internet Applications (Introduction) Page 35 © Mark Llewellyn

• We’ve already seen that the Host header field is used when
forming the URI associated with an HTTP request (see page
25). The Hose header field is required in every HTTP/1.1
request message.

• HTTP/1.1 also defines a number of other header fields, several
of which are commonly used by modern browsers.

• Each header field begins with a field name, such as Host,
followed by a colon and then a field value. White space is
allowed to precede or follow the field value, but such white
space is not considered part of the value itself.

• The example on the next page (slightly modified), represents
an actual HTTP request sent by a browser consisting of a start
line, 10 header fields, and a short message body.

Header Fields and MIME Types

CGS 3175: Internet Applications (Introduction) Page 36 © Mark Llewellyn

Example HTTP Request Message
POST /servlet/EchoHttpRequest HTTP/1.1

host: www.example.org:56789

user-agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.4)

Gecko/20030624

accept: text/xml,application/xml,application/xhtml+xml,

text/html;q=0.0,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,

image.gif;q=0.2,*/*;q=0.1

accept-language:en-us,en;q=0.5

accept-encoding:gzip,deflate

accept-charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

connection: keep-alive

keep-alive: 300

content-type: application/x-www-form-urlencoded

content-length: 13

doit=Click+me

CGS 3175: Internet Applications (Introduction) Page 37 © Mark Llewellyn

• Before we look at each of the header fields, it will be helpful to
understand some common header field features:

1. Header names are not case sensitive, although they often appear as
defined in the HTTP/1.1 reference [RFC-2616].

2. A header field value may wrap onto several lines by preceding each
continuation line with one or more spaces or tabs (see the lines on page
36 for User-Agent and Accept fields)

3. The header field name must begin in the first character in a line, with no
preceding white space.

4. MIME types are used in several header field values. MIME is an
acronym for Multipurpose Internet Mail Extensions, and refers to a
standard that can be used to pass a variety of types of information,
including graphics and applications, through e-mail as well as through
other Internet message protocols.

Header Fields and MIME Types

CGS 3175: Internet Applications (Introduction) Page 38 © Mark Llewellyn

5. Header field values may use so-called quality values to indicate
preferences. A quality value is specified by a string of the form
:q=num where num is a decimal number between 0 and 1, with a
higher number representing greater preference. Each quality value
applies to all of the comma separated field values preceding it back to
the next earlier quantity values.

– In the example on page 36, according to the Accept header field, the
browser in this example prefers text/xml (quality value 0.9) over image/jpeg
(quality value 0.2).

6. The * character in a header field is a wildcard character. For instance,
the string */* in the Accept header field value represents all possible
MIME types.

• Each of the header fields shown in the example on page 36 are briefly
described in the table on the following two pages.

Header Fields and MIME Types

CGS 3175: Internet Applications (Introduction) Page 39 © Mark Llewellyn

Some Common HTTP/1.1 Request Header Fields

Allows the client to express preferences to a server than can return a
document using various character sets.

Accept-Charset

Specifies the preferred language(s) for the response body. A sever may have
several translations of a document, and among these should return the one
that has the highest preference rating in this header field.

Accept-Language

MIME types of documents that are acceptable as the body of the response,
possibly with indication of preference ranking (quality value). If the server
can return a document according to one of several formats, it should use a
format that has the highest possible preference rating in this header.

Accept

Specify authority portion of URL (plus host port number). Used to support
virtual hosting (running separate web servers for multiple fully qualified
domain names sharing a single IP address.

Host

Specifies the preferred encoding(s) for the response body. For example, if a
server wishes to send a compressed document (to reduce transmission time),
it may one use one of the types of compression specified in this header.

Accept-Encoding

A string identifying the browser or other software that is sending the request.User-Agent

UseField Name

CGS 3175: Internet Applications (Introduction) Page 40 © Mark Llewellyn

Some Common HTTP/1.1 Request Header Fields (cont.)

Number of bytes of data in the message body, if one is present. In the
example on page 36, this number is 13 since doit=Click+me contains 13
characters (bytes).

Content-Length

The MIME type of the document contained in the message body, if one is
present. If this field is present in a request message, it normally has the value
shown in the example, application/x-www-form-urlencoded.

Content-Type

Indicates whether or not the client would like the TCP connection kept open
after the response is sent. Typical values are keep-alive if the connection
should be kept open (the default behavior for servers/clients compatible with
HTTP/1.1), and close if not.

Connection

(Yes, it is spelled correctly!) The URI of the resource from which the browser
obtained the Request-URI value for this HTTP request. For example, if the
user clicks on a hyperlink in a web-page, causing an HTTP request to be sent
to a server, the URI of the web page containing the hyperlink will be sent in
the Referer field of the request. This field is not present if the HTTP request
was generated by the user entering a URI in the browser’s Location bar.

Referer

Number of seconds TCP connection should be kept open.Keep-Alive

UseField Name

CGS 3175: Internet Applications (Introduction) Page 41 © Mark Llewellyn

• Every HTTP response message has the same
basic structure:

Status line
Header field(s) (one or more)
Blank line
Message body (optional)

• The status line in the example on page 25 was:

HTTP/1.1 200 OK

HTTP Response Message

CGS 3175: Internet Applications (Introduction) Page 42 © Mark Llewellyn

• Like the start line of a request message, the status line of a
response message consists of three parts, with a single space
used to separate adjacent parts:

1. The HTTP version used by the server software when formatting the
response.

2. A numeric status code indicating the type of the response.

3. A text string (the reason phrase) that presents the information
represented by the number status code in human-readable form.

• In the example on page 25, the status code is 200 and the reason
phrase is OK. This particular status code indicates that no
errors where detected by the server. The body of the response
containing this status code should contain the resource
requested by the client.

HTTP Response Message

CGS 3175: Internet Applications (Introduction) Page 43 © Mark Llewellyn

• All status codes are three-digit decimal numbers.

• The first digit represents the general class of status
code. There are five classes of HTTP/1.1 status codes
and these are shown in the table on page 44.

• The last two digits of a status code define the specific
status within the specified class. A few of the more
common status codes are shown in the table on page
45.

• The HTTP standard recommends reason phrases for
all status codes, but a server may use alternative but
equivalent phrases. All status codes and
recommended phrases are contained in [RFC-2616].

HTTP Response Message – Status Codes

CGS 3175: Internet Applications (Introduction) Page 44 © Mark Llewellyn

HTTP/1.1 Status Code Classes
(First Digit of Status Code)

An error occurred during server processing of a valid
client request.Server Error5

Provide information to client before request processing
has been completed.Informational1

Client’s request is not valid.Client Error4

Client needs to use a different resource to fulfill
request.Redirection3

Request has been successfully processed.Success2

Standard UseClassDigit

CGS 3175: Internet Applications (Introduction) Page 45 © Mark Llewellyn

Some Common HTTP/1.1 Status Codes

Server software detected an internal failure.Internal Server Error500

No resource corresponding to the given Request-URI was found at this
server.Not Found404

The resource is present on the server but is read protected.Forbidden403

Request processed normally.OK200

The resource is password protected, and the user has not yet supplied a
valid password.Unauthorized401

URI for the requested resource ahs been changed at least temporarily.
This request should be fulfilled by making a second request to the URI
contained in the Location header field of the response. Most browsers
will automatically send a second request to the new URI and display
the second response.

Temporary Redirect307

URI for the requested resource has been changed. All future requests
should be made to URI contained in the Location header field of the
response. Most browsers will automatically send a second request to
the new URI and display the second response.

Moved Permanently301

Usual MeaningRecommended
Reason Phrase

Status
Code

CGS 3175: Internet Applications (Introduction) Page 46 © Mark Llewellyn

• Some of the header fields used in HTTP request
messages, including Connection, Content-Type,
and Content-Length, are also valid in response
messages.

• The Content-Type of a response can be any one
of the MIME type values specified by the
Accept header field of the corresponding
request.

• Some other common response header fields are
shown in the table on page 47.

HTTP Response Message – Header Fields

CGS 3175: Internet Applications (Introduction) Page 47 © Mark Llewellyn

Some Common HTTP/1.1 Response Header Fields

Used in responses with redirect status code to specify new URI for the requested
resource.

Location

Clients can request that only a portion (range) of a resource be returned by using the
Range header field. This might be used if the resource is, say, a large PDF file and only
a single page is currently needed. Accept-Ranges specifies the units that may be used
by the client in a range request, or none, if range requests are not accepted by this server
for this resource.

Accept-Ranges

Time after which the client should check with the server before retrieving the returned
resource from the client’s cache.

Expires

Time at which the resource returned by this request was last modified. Can be used to
determine whether a cached copy of a resource is valid or not.

Last-Modified

Time at which response was generated. Used for cache control. This field must be
supplied by the server.

Date

Information identifying the server software generating this response.Server

UseField Name

